Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

The Carino arithmetic algorithm is similar to the Menchero arithmetic algorithm. The difference lies in the scaling coefficients used for smoothing. These are calculated differently. The single-period Carino coefficients are calculated as:
Image RemovedImage Added
where if Image Removed Image Added then
Image RemovedImage Added
The product Image Removed Image Added is then a continuously compounding form of the currency effect. The sum of the continuously compounded currency, cross product, allocation, and selection attribution effects sum to the difference in continuously compounding returns:
Image RemovedImage Added 
To transform back to the difference in returns (instead of the difference in log-returns), the combined period factor is calculated as follows:
Image RemovedImage Added 
where again if Image Removed Image Added then
Image RemovedImage Added
The formula for the combined currency effect is:
Image RemovedImage Added
The cross product, allocation, and selection effects are calculated similarly.

...

The Carino geometric algorithm is a variant of the Carino arithmetic algorithm in which the excess return and effects are expressed in geometric form. The approach begins with the arithmetic attribution effects, including scaling them through the factor defined in Carino's arithmetic method. It then transforms the effects into a multiplicative form through an exponential. Through this transformation, the geometric attribution effects are aggregated without a residual to the total period geometric excess return.

More specifically, the smoothed geometric selection effect is produced by the exponential of the Carino smoothed arithmetic allocation effect:

Image Removed Image Added ,
and similarly, for the selection and interaction effects:
Image RemovedImage Added
and
Image Removed Image Added .
Over multiple-periods, these attribution effects are combined multiplicatively. The multiple-period allocation effect is produced by:
Image Removed Image Added .
Similarly, for the selection and interaction effects:
Image RemovedImage Added
and
Image RemovedImage Added
The allocation, selection, and interaction effects multiply exactly to the geometric excess return without any residual:
Image RemovedImage Added
You can calculate a combined period allocation, Image Removed by Image Added by compounding:
Image RemovedImage Added
Combined period selection and interaction are calculated similarly. The combined effects satisfy the multiplicative decomposition:
Image RemovedImage Added