Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Develop a Data Mart Implementation Plan

...

Use the Data Mart Planning Template

Global Professional Services has a template that is very useful for storing all of the Data Mart and regular meta data elements involved in a Mart, and can serve as the basis of an implementation plan.

...

When more than one type of data must be reported in more than one source hierarchy, the number of required source rules can proliferate and lead to several snapshots and heavy duplication of data. For this reason, you should make choices to limit the required list of snapshots. See Sharing of Security Details Among Snapshotsfor additional information.

...

System performance in building Mart data is enhanced when your design takes advantage of parallel processing by multiple concentration (OLAP) engine instances. Each Data Mart table extension is populated under the direction of a separate Model Manager instance that generates its own set of underlying OLAP processes. This means that the use of extensions can increase parallel processing and speed population of the Mart.

A Global Professional Services study has recorded the advantages of extensions in populating performance measurement data in particular. See the Data Mart White Paper in Knowledge Base article 8459. Performance Analysis OLAP processes underlying a Data Mart model are among the most I/O and compute-intensive of any, so extensions can be particularly helpful in minimizing run time as you build performance linked returns, risk fields and other complex calculations. When you assign performance fields to an extension, it is best to group fields together that you would logically assign to the same Performance Analysis OLAP report, such as a single attribution group or a series of performance link analysis fields that span either a short or a long-term time span.

...

However, you might need to report benchmark returns whose values do not depend upon association with a particular fund. For example, the QTD return of the “vanilla” S&P 500 index as of a given date is the same number for all funds. Obviously you can reduce your Data Mart build requirements by building that number just once rather than once per fund. Benchmark returns may be built on their own rows in Fund Summary. Then for each individual fund you can populate Fund Summary with the entity IDs of its associated benchmarks, and design your SQL accordingly.

Engage Eagle Technical Services

Database tuning can almost always make a well-designed Mart run even better. In addition, if your Data Mart requirements involve hundreds of fields or thousands of funds, hardware sizing also deserves expert attention. Eagle Technical Services offers the benefits of their experience with a variety of significant Data Mart implementations, and can add substantial value to your Mart planning process.

...

Remember that all as-of reporting against Data Mart requires that data be kept for all possible prior dates you might want to report. If you need data for time periods already purged, the lost rows can be rebuilt, but there will likely be restatements of numbers previously reported.

In V9.0 under Archive Engine support of Data Mart, if you want to archive to a table and save each year’s rows together with a labeling effect, you can simply assign names to archive tables with a naming convention that includes the desired date information.

You should purge the Data Mart execution tables and leave them with no more than 1 months’ worth of data. Your specific needs may be different. Not purging can result in system performance issues.